Desiccant-based dry storage avoids some of these drawbacks, but introduces others. These systems remove moisture from an incoming supply line of air (or other process gas) and often feature dual-tower designs that perform on-line drying and off-line regeneration simultaneously for continuous operation. Such systems can be effective, but they require heating/drying components that may not be reliable. Further, they must be closely monitored to ensure that incoming gas flow remains below a critical humidity threshold. Their complexity and high operating costs makes them prohibitively expensive for long-term storage applications.
As an alternative to desiccant dryers, nitrogen-purged desiccator systems maintain dry conditions relatively cheaply and conveniently. Nitrogen is the standard medium for contamination-free storage because it is relatively inert – it neither reacts with stored materials nor carries moisture – and because it can be isolated and purified relatively inexpensively.
Desiccator cabinets must be set up so that an appropriate flow of nitrogen forces out all moisture- and contamination-laden air. Because nitrogen has a lower specific gravity than air, it is introduced into the upper section of the desiccator; the heavier air is then purged out of the bottom.
Failure to maintain the appropriate nitrogen flow into a desiccator, or to bleed the cabinet effectively, can be devastating. Once inside a desiccator, moisture can penetrate the molecular structure of stored components, requiring baking or vacuum processing.










